3,873 research outputs found

    Lyapunov functionals for boundary-driven nonlinear drift-diffusions

    Full text link
    We exhibit a large class of Lyapunov functionals for nonlinear drift-diffusion equations with non-homogeneous Dirichlet boundary conditions. These are generalizations of large deviation functionals for underlying stochastic many-particle systems, the zero range process and the Ginzburg-Landau dynamics, which we describe briefly. As an application, we prove linear inequalities between such an entropy-like functional and its entropy production functional for the boundary-driven porous medium equation in a bounded domain with positive Dirichlet conditions: this implies exponential rates of relaxation related to the first Dirichlet eigenvalue of the domain. We also derive Lyapunov functions for systems of nonlinear diffusion equations, and for nonlinear Markov processes with non-reversible stationary measures

    Exponential Runge-Kutta methods for stiff kinetic equations

    Full text link
    We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear systems of equations even in stiff regimes. We give sufficient conditions in order that such methods are unconditionally asymptotically stable and asymptotic preserving. Such stability properties are essential to guarantee the correct asymptotic behavior for small relaxation times. The methods also offer favorable properties such as nonnegativity of the solution and entropy inequality. For this reason, as we will show, the methods are suitable both for deterministic as well as probabilistic numerical techniques

    The Hubbard model in the two-pole approximation

    Full text link
    The two-dimensional Hubbard model is analyzed in the framework of the two-pole expansion. It is demonstrated that several theoretical approaches, when considered at their lowest level, are all equivalent and share the property of satisfying the conservation of the first four spectral momenta. It emerges that the various methods differ only in the way of fixing the internal parameters and that it exists a unique way to preserve simultaneously the Pauli principle and the particle-hole symmetry. A comprehensive comparison with respect to some general symmetry properties and the data from quantum Monte Carlo analysis shows the relevance of imposing the Pauli principle.Comment: 12 pages, 8 embedded Postscript figures, RevTeX, submitted to Int. Jou. Mod. Phys.

    On the speed of approach to equilibrium for a collisionless gas

    Get PDF
    We investigate the speed of approach to Maxwellian equilibrium for a collisionless gas enclosed in a vessel whose wall are kept at a uniform, constant temperature, assuming diffuse reflection of gas molecules on the vessel wall. We establish lower bounds for potential decay rates assuming uniform LpL^p bounds on the initial distribution function. We also obtain a decay estimate in the spherically symmetric case. We discuss with particular care the influence of low-speed particles on thermalization by the wall.Comment: 22 pages, 1 figure; submitted to Kinetic and Related Model

    On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity

    Full text link
    We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly very) soft potentials. A global well-posedeness result is shown for all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to be the first one applying to a strong angular singularity, except in the special case of Maxwell molecules. Our proof relies on the ideas of Tanaka: we give a probabilistic interpretation of the Boltzmann equation in terms of a stochastic process. Then we show how to couple two such processes started with two different initial conditions, in such a way that they almost surely remain close to each other

    Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential

    Full text link
    We prove the uniqueness of bounded solutions for the spatially homogeneous Fokker-Planck-Landau equation with a Coulomb potential. Since the local (in time) existence of such solutions has been proved by Arsen'ev-Peskov (1977), we deduce a local well-posedness result. The stability with respect to the initial condition is also checked
    • 

    corecore